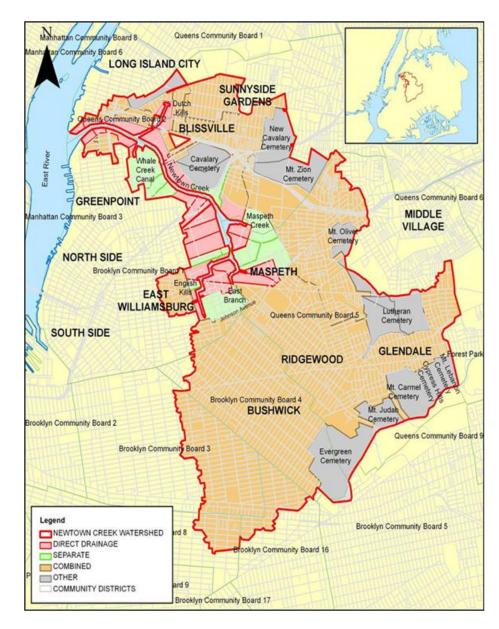
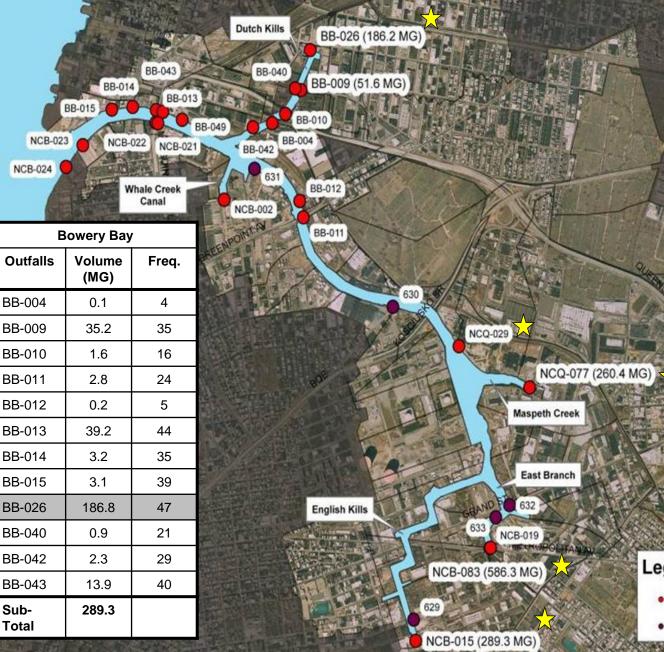


NYC CSO Flow Monitoring Project Newtown Creek


Newtown Creek CAG

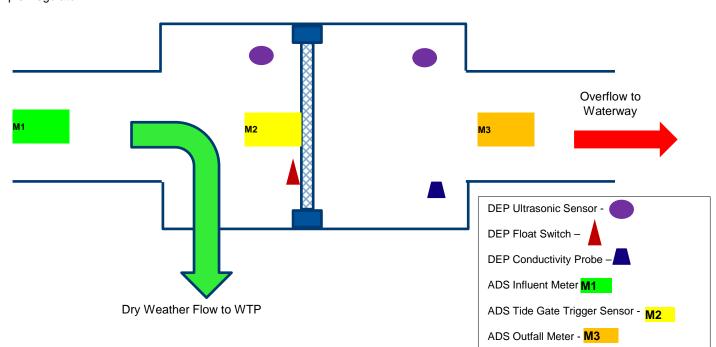
February 6, 2014


Newtown Creek Catchment Area

- 3.5 mile long urban tributary to East River
 - Contains four major tributaries
 - Bulk headed and channelized
 - No Natural Surface Freshwater Flow
- Watershed is approximately 10,741 acres
- Land use in immediate vicinity of Newtown Creek is generally dominated by heavy industry, manufacturing, transportation, and utilities
- Newtown Creek WWTP wet expansion to 700 MGD – reduces CSO into NC by 150 MGY

Newtown Creek Outfalls

Newtown Creek					
Outfalls	Volume (MG)	Freq.			
NCB-015	307.8	33			
NCB-019	0.4	7			
NCB-022	8.4	42			
NCB-023	0.2	5			
NCB-024	0.0	0			
NCQ-029	18.1	48			
NCQ-077	261.5	49			
NCB-083	586.2	71			
Sub-Total	1182.6				


Legend

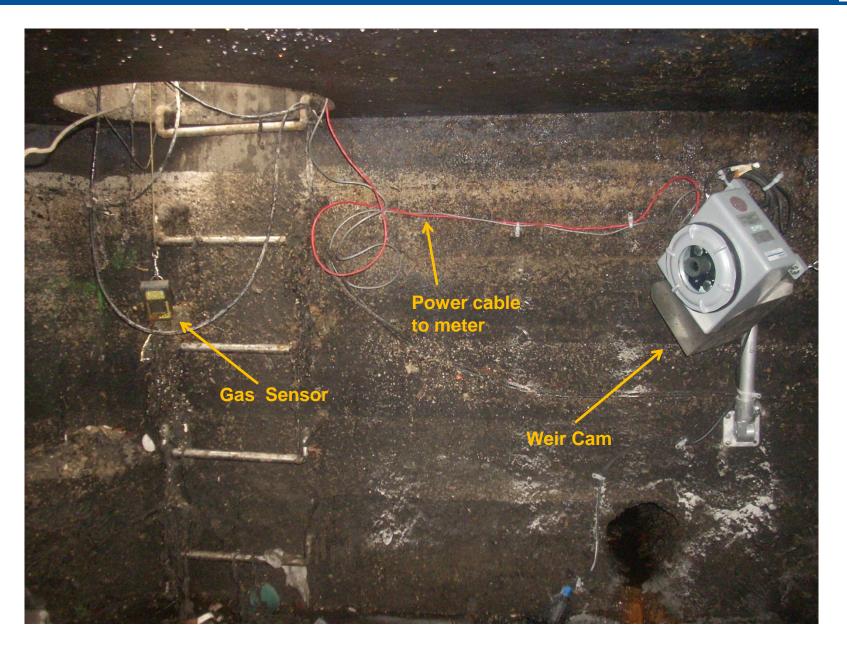
CSOs (AAOV)

NYCDEP SPDES Permitted Storm Outfalls

Simplified Schematic of Regulator

Simple Regulator

FlowShark Triton Flow Meter from ADS



- Battery power ~8 months
- Sensors set for 2 min readings
- 2 sensor channels per Triton x 3 parameters per sensor
- Up to 6 individual parameters per meter

Weir Cam Installation

How accurately can we...

- ✓ Determine if CSO occurred
- ✓ Duration
- ✓ Quantity

	ADS Data Analysis		NYCDEP Data Analysis				
Date/Time	Preliminary Data	Preliminary Data	Einal Data	Madaling	SCADA	Dain Cagos	Diant Flours
	Method 1	Method 2	Final Data	Modeling	SCADA	Rain Gages	Plant Flows
Event 1							
Event 2							
Event 3							

ADS Data Analysis

- Field calibration of all sensors
- Scattergraph analysis
- Q vs. i for incoming flow

NYCDEP Data Analysis

- Hydraulic model comparison
- SCADA data comparison
- Rain data comparison
- Plant Flows

Preliminary Results

- BB026 was included in a pilot project for CSO flow monitoring
 - Data collection began in October 2012 and will continue along with the additional four outfalls that DEP is currently installing flow monitoring systems in

October 2012 - September 2013 Comparative Data Analysis								
Site	ADS Final Data			NYCDEP Modeling Results				
	# Events	Hours	Volume (MG)	# Events	Hours	Volume (MG)		
BB-026	40	204	114	39	198	160		

- Preliminary results based on one year of data collection show that the model of the BB026 drainage area conservatively predicts 40% greater volume of CSO at this outfall compared to the end of pipe metering system
- NYCDEP is in the process of refining the hydraulic models based on the data collected to date to better align with the flow monitoring data

Preliminary Flow Monitoring Schedule

Complete Installation:

Start-up/Test Period:

March 2014

Feb 28, 2014

✤Data Collection:

Apr 2014 – Apr 2015

Development of a LTCP

- DEP will develop a CSO LTCP by June 2017 per the existing administrative consent order
- Scope of work will cover the following:
 - Additional characterization of the waterbody
 - Robust public participation
 - Determining the future "Highest Attainable Use" of waterbody per EPA CSO policy (sets the LTCP endpoint)
 - Evaluate Additional CSO Controls (Grey & Green) to achieve Highest Attainable Water Quality Use