

Newtown Creek Superfund Site - Modeling Overview CAG Technical Meeting March 20, 2019

Presentation Overview

- Role of models in decision-making
- Scope of modeling study
- Overview of modeling framework
- Review of individual sub-models
- Model application for feasibility study
- Status of modeling study

Role of Models in Decision-Making

- What are models?
 - Computational or numerical models
 - A simplification of reality...formal representation in mathematical terms (USEPA, 2009)
 - Implementation in software algorithms
 - Flexible applications
 - 0D, 1D, 2D, 3D
 - Time-variable

Role of Models (Contd.)

- Modeling in the Superfund process
 - Remedial investigation
 - Feasibility study
 - Remedy design

Role of Models (Contd.)

- Why use models?
 - Issues related to site characterization
 - Identify data gaps
 - Quantitative assessment of contaminant fate and transport sources, sinks, etc.
 - Develop conceptual site model
 - Issues related to site management
 - Develop site management options
 - Predictive tool for comparison of remedial alternatives
 - Provides another line of evidence in addition to empirical observations in developing a remedy
 - Support remedy design
 - Engineering design of remedial elements, environmental and flood impacts assessments, etc.

Role of Models (Contd.)

- Interaction between modeling and data
 - Identify fate and transport processes
 - Model inputs, calibration & validation
- Model limitations and constraints (USEPA, 2002; 2005; 2009a; 2017)
 - Simplification of reality

- Constraints computational limitations, assumptions and knowledge gaps
- Tools to help inform decisions rather than machines to generate truth or make decisions
- Consideration of model assumptions and uncertainties in site decision-making
- Use of model results as one of several lines of evidence to inform site decision-making

Scope of Modeling Study

- Primary objective of the Newtown Creek modeling study (Anchor QEA, 2012; 2014) is to develop a reliable management tool that can be used to
 - Inform the conceptual site model
 - Evaluate the efficacy of remedial alternatives

Scope of Modeling Study (Contd.)

- Specific questions that may be answered by the Newtown Creek modeling study
 - Site characterization
 - What effects do chemical concentrations in the sediment bed have on total chemical concentrations in the water column and in biota?
 - What is the effect of chemical loads from the East River on chemical concentrations in the sediment bed and in biota?
 - What is the annual load of chemicals from Newtown Creek to the East River under current conditions?
 - What are the effects of ongoing sources on chemical concentrations in the sediment bed and in biota?
 - What are the effects of high-flow events or storms on chemical concentrations in the sediment bed, in the water column, and in biota?
 - What is the potential for erosion, transport, and re-deposition of particleassociated chemicals in the sediment bed during high-flow events or storms at different locations within Newtown Creek?

Scope of Modeling Study (Contd.)

- Specific questions that may be answered by the Newtown Creek modeling study
 - Feasibility study
 - What is the rate of natural attenuation of chemical concentrations in the sediment bed and in biota under future conditions?
 - How would various remedial alternatives affect the rate of attenuation of chemical concentrations in the sediment bed and in biota?
 - How would various remedial alternatives affect the annual load of chemicals from Newtown Creek to the Fast River?
 - What is the potential for recontamination of remediated areas due to inputs from the East River and/or ongoing sources?
 - What is the potential effect of ship traffic (i.e., propwash) on the effectiveness of various remedial alternatives?

Conceptual Site Model – Physical

- Draft version
 - Food chain shown subsequently

Modeling Framework

- Contaminant fate and transport in Newtown Creek proposed to be modeled by a suite of sub-models
 - Watershed or point-source model
 - Groundwater model
 - Surface water hydrodynamic model
 - Surface water sediment transport model
 - Surface water contaminant fate and transport model
 - Foodchain or bioaccumulation model

Modeling Framework (Contd.)

Draft version

Model Review – Watershed

Model Review - Watershed (Contd.)

- Processes simulated
 - Rainfall runoff
 - Transport through collection system
 - Release to
 Newtown Creek
 via combined
 sewer overflow
 (CSO) and storm
 drains

Note: General schematic of urban wet weather flows. Not intended to be a conceptual schematic of the Newtown Creek watershed

Model Review - Watershed (Contd.)

- Model framework
 - InfoWorks hydrologic and hydraulic model
 - Developed by NYC for the LTCP
- Model domain
 - Newtown Creek and Bowery Bay WWTP sewersheds
- Model inputs
- Model calibration

Model Review - Watershed (Contd.)

- Model outputs and linkages with other models
 - Outputs
 - Flow rates
 - Model linkages
 - Hydrodynamic
 - Sediment transport
 - Contaminant fate and transport

Model Review – Groundwater

Model Review - Groundwater (Contd.)

- Processes simulated
 - Rainfall infiltration and groundwater recharge
 - Subsurface groundwater flow
 - Release to Newtown
 Creek (exfiltration), loss
 to sewer and subway
 system, withdrawal

Model Review - Groundwater (Contd.)

- Steady-state model
- Model domain
 - Defined using groundwater elevation contours
- Model inputs
 - USGS data and modeling
 - RI data
 - Secondary data sources

Model Review – Groundwater (Contd.)

- Tiered approach for modeling
 - Tier 1
 - Develop regional water balance
 - Tier 2 and Tier 3
 - Estimate flow rates for groundwater discharge into Newtown Creek
 - Calibrated to measured seepage data

Model Review - Groundwater (Contd.)

- Model outputs and linkages with other models
 - Outputs
 - Flow rates
 - Model linkages
 - Hydrodynamic
 - Contaminant fate and transport
 - Loadings based on RI contaminant concentrations in native sediments

Model Review – Hydrodynamic

- Parameters simulated
 - Currents (advection)
 - Dispersion
 - Water depths/levels
 - Salinity
 - Temperature
- Processes simulated

Anchor QEA, 2012

- Freshwater inflow from CSOs, SW outfalls, direct runoff, etc.
- Tide and other water level fluctuations (eg. surge) propagating from East River, i.e., tidal transport
- Estuarine circulation resulting from density differences between seawater and freshwater (also temperature)

- Model framework
 - Environmental Fluid Dynamics Code (EFDC)
 - 3-dimensional
- Model domain
 - Average grid size 140 ft x 60 ft in Newtown Creek

- Model inputs
 - Boundary conditions
 - Bathymetry
- Model calibration
 - Calibration metrics
 - Calibration datasets
 - Calibration period
 - Calibration parameters
- Model application

 Model outputs and linkages with other models

Outputs

- Currents
- Water depths
- Dispersion
- Model linkages
 - Sediment transport
 - Contaminant fate and transport

Model Review – Sediment Transport

Model Review - Sediment Tran. (Contd.)

- Parameters simulated
 - Sediment in the water column and the bed
 - Transport external loadings, advection, dispersion
 - Resuspension
 - Settling and deposition
- Processes simulated
 - Fate and transport of sediments from various sources
 - East River
 - Point source loadings
 - Impact of navigation

Model Review – Sediment Tran. (Contd.)

- Model framework
 - SEDZLJ
 - Cohesive sediments (fines or clays and silts; <63 μm)
 - Non-cohesive sediments (sands; >63 µm)
 - 3-dimensional
- Model domain and grid same as hydrodynamic model

Model Review – Sediment Tran. (Contd.)

- Model inputs
 - Sediment classes
 - **Boundary conditions**
 - Bed initial conditions
 - **Erosion properties**
 - Settling velocities
 - Navigation traffic
- Model calibration
 - Calibration metrics
 - Calibration datasets
 - Calibration period
 - Calibration parameters
- Model application

Model Review - Sediment Tran. (Contd.)

- Model outputs and linkages with other models
 - Outputs
 - Suspended sediment concentrations
 - Fluxes
 - Erosion
 - Deposition
 - Model linkage
 - Contaminant fate and transport

Model Review – Contaminant Fate & Transport

Model Review – Contaminant F&T (Contd.)

- Parameters/formulations simulated
 - Water column and bed contaminants
 - External loadings, advection, dispersion
 - Resuspension and deposition
 - Partitioning
 - Bed-water dissolved exchange
 - Bioturbation
 - Volatilization
 - Porewater advection
 - Ebullition and NAPL loadings*

Water Column Partitioning

External Loads (CSOs, stormwater, industrial

discharges, groundwater flux)

Anchor QEA, 2014

Processes simulated

- Fate and transport of contaminants from various sources
- Quantitative evaluation of various contaminant fate and transport processes
- Contaminant exposure over various temporal & spatial scales

Model Review - Contaminant F&T (Contd.)

- Model framework
 - AQFATE
 - Contaminants to be determined based on human and ecological risk
- Model domain and grid same as hydrodynamic, and sediment transport models
- Model inputs
 - Bed initial conditions
 - Boundary conditions and loadings
 - Partition coefficients
- Model calibration
 - Proposed calibration metrics
 - Proposed calibration parameters
 - Proposed calibration period

Model Review – Contaminant F&T (Contd.)

Model

 Model outputs and linkages with other models

Outputs

 Contaminant exposure concentrations

Water column

Bed

Model linkage

Bioaccumulation model

Model Review - Bioaccumulation

Model Review - Bioaccumulation (Contd.)

- Objective to calculate contaminant uptake and accumulation in biota
 - Calculate tissue concentrations
 - Relevant for human and ecological exposure
 - Use to assess remediation effectiveness

Adapted from Anchor QEA, 2016a

Model Review - Bioaccumulation (Contd.)

- Model framework
 - Simple approaches such as BAF and BSAF
 - Complicated mechanistic approaches that include
 - Diet and food web structure
 - Movement/migration patterns, spatial and temporal scales
 - Uptake and depuration
 - Metabolism
 - Bioenergetics
 - Exact details under development
- Phase 1 and Phase 2 data (in combination with literature data) to be used to support model development and calibration

Model Application for Feasibility Study

- Future projections
 - Typically decadal-scale
 - Comparison of several metrics for various management alternatives
 - Baseline (no remediation)
 - Various alternatives including remediation

Status of Modeling Study

- Watershed (point source) model complete
 - Developed by New York City for the LTCP
- Groundwater, hydrodynamic, and sediment transport models
 - Initial versions submitted with draft RI in 2016
 - Revised versions expected in April 2019
- Contaminant fate and transport model
 - Under development
 - Initial version expected to be submitted in December 2019
- Bioaccumulation model
 - Under development
 - Initial version expected to be submitted in March 2020

References

- AECOM, 2011. Remedial Investigation/Feasibility Study Work Plan, Newtown Creek. Westford, MA
- Anchor QEA, 2012. Modeling Approach Memorandum (1), Remedial Investigation/Feasibility Study, Newtown Creek. Montvale, NJ
- Anchor QEA, 2014. Draft Modeling Approach Memorandum (2), Remedial Investigation/Feasibility Study, Newtown Creek. Montvale, NJ
- Anchor QEA, 2016a. Draft Modeling Approach Memorandum (3), Remedial Investigation/Feasibility Study, Newtown Creek. Montvale, NJ
- Anchor QEA, 2016b. Draft Remedial Investigation Report, Remedial Investigation/Feasibility Study, Newtown Creek. Montvale, NJ
- USEPA, 2002. Principles for Managing Contaminated Sediment Risks at Hazardous Waste Sites. Office of Solid Waste and Emergency Response, OSWER 9285.6-08
- USEPA, 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. Office of Solid Waste and Emergency Response, OSWER 9355.0-85, EPA-540-R-05-012
- USEPA, 2009a. Guidance on the Development, Evaluation, and Application of Environmental Models. Office of the Science Advisor, Council for Regulatory Environmental Modeling, EPA/100/K-09/003
- USEPA, 2009b. Environmental Modeling 101, Web-based Training on Best Modeling Practices and Technical Modeling Issues, Council for Regulatory Environmental Modeling.
- USEPA, 2017. Remediating Contaminated Sediment Sites Clarification of Several Key Remedial Investigation/Feasibility Study and Risk Management Recommendations, and Updated Contaminated Sediment Technical Advisory Group Operating Procedures. Office of Land and Emergency Management, OLEM 9200.1-130