

Newtown Creek Superfund Site Supplemental Characterization of Shallow Lateral Groundwater Discharge

- Introduction
- Objectives and Guiding Concepts
- Definition of Shallow Lateral Groundwater Discharge
- Proposed Elements of Supplemental Data Collection
- Proposed Work Elements and Schedule Goals

Introduction

- Need for additional characterization of shallow lateral groundwater (GW) discharge
 - Improve estimates of groundwater discharge rates
 - Address uncertainty regarding contaminant loading via shallow lateral groundwater discharge
 - Improve conceptual site model for groundwater
 - Importance of shallow lateral GW discharge
- Why supplemental characterization is needed
 - Groundwater flow and its contaminant loading can be a significant percentage of total discharge to Study Area
 - Current RI-based characterization of groundwater discharge relies upon seepage meters that measured vertically upwards groundwater seepage through Study Area sediments

Objectives and Guiding Concepts

- EPA will collect supplemental data, analyze and evaluate the data, and report results
- This will help produce:
 - Updates to the Conceptual Site Model (CSM) for groundwater
 - Supporting information for the FS

Note: Info now being shared is subject to revision as EPA develops plans with technical input from stakeholders including NCG/NYCDEP/NYSDEC/etc.

Definition of Shallow Lateral Groundwater Discharge

General Shoreline Types

Example of Rip Rap Permeable Shoreline Type Shown in Cross-Section (several other types exist)

R ANCHOR

OEA

DRAFT

Figure F3-3a Typical Shoreline Structure Construction – Riprap Groundwater Evaluation Newtown Creek RI/FS

Definition of Shallow Lateral Groundwater Discharge

Schematic (Left) and Example (Right) Cross-Sections

Proposed Elements of Supplemental Data Collection

- Monitoring Wells install new or use existing ones
 - Establish locations along shoreline areas
 - Regular grid of unbiased locations spaced about 0.4 mi apart for total of 32 locations
 - Representative shoreline conditions
 - One well near shoreline, another <= 300 ft inland
 - Well couplets (shallow/deeper) at some locations
 - Evaluate use of existing wells per acceptance criteria

Example Diagram of Monitoring Well

11/18/2020

from EPA Clu-In newsletter https://clu-in.org/characterization/technologies/dpgroundwater.cfm 8

Preliminary Shoreline Locations – Lower Creek

Preliminary Shoreline Locations – Middle Creek

Preliminary Shoreline Locations – Upper Creek

Proposed Elements of Supplemental Data Collection (cont'd)

- Groundwater Level Monitoring
 - Monthly rounds during 3 seasons
 - Continuous recording in representative subset
- Tide Gauge continuous surface water levels

Proposed Elements of Supplemental Data Collection (cont'd)

- Hydraulic Characterization
 - Hydraulic tests in monitoring wells
 - Analysis of tide-induced variations
 - Estimation of in-situ hydraulic conductivity
 - Evaluation of measured gradients

Proposed Elements of Supplemental Data Collection (cont'd)

- Data-Collection in Monitoring Wells
 - Hydraulic tests to establish permeabilities
 - Groundwater velocity measurements
- Shallow GW Quality
 - Full set of chemical analyses and field parameters
 - Each one of the 3 seasons

Proposed Elements of Supplemental Data Collection (cont'd)

- Shallow Lateral Seepage Water Quality Sampling
 - Techniques being considered:
 - Seepage/flux meters for continuous-composite sampling
 - Wells or well-points for one time / low-tide samples
 - Conduct sampling during one or more of the 3 seasons
 - Analyze for full set of Superfund and field parameters

Proposed Work Elements and Schedule Goals

- Develop work plan including Technical Workshops with and input from NCG/NYCDEP/NYSDEC/etc. (ongoing)
- Review/finalize field planning documents (Spring 2021)
- Conduct field work and collect data during 3 seasons
 - Start field work in Summer 2021
 - Complete field work within 1 year
- Evaluation and Reporting (following field work completion)
 - Process data and analyze results
 - Develop draft and final reports
- Include report as an Appendix to the OU1 FS Report