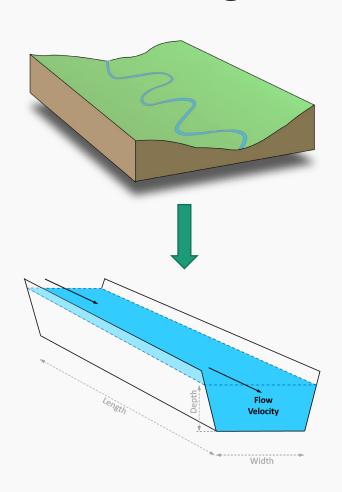


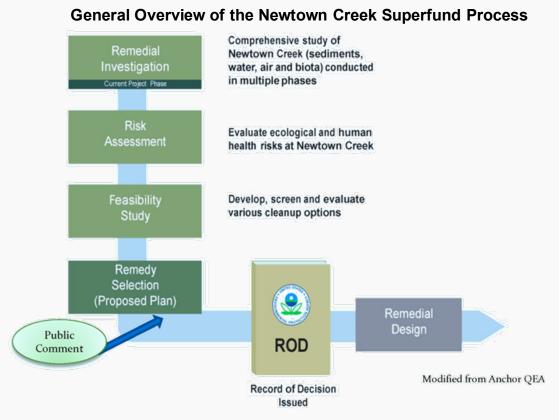
Newtown Creek Superfund Site – OU1 Chemical Fate and Transport Model Status

CAG Meeting November 15, 2023


Presentation Overview

- Role of models in Superfund decision-making
- Conceptual site model
- Modeling framework
- Chemical fate and transport (CFT) model status
- Comment-response process for CFT model
 - Overview of key comments, including examples
- Schedule for CFT model

Role of Models in Decision-Making


- What are models?
 - Computational or numerical models
 - A simplification of reality...formal representation in mathematical terms (USEPA, 2009)
 - Implementation in software algorithms
 - Flexible applications
 - Spatially-variable
 - Time-variable

Role of Models (Contd.)

- Modeling in the Superfund process
 - Remedial investigation
 - Feasibility study
 - Remedy design

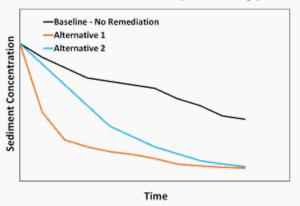
Role of Models (Contd.)

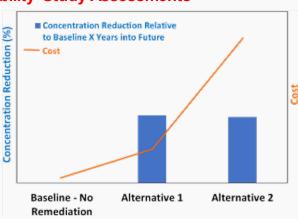
- Why use models?
 - Issues related to site characterization
 - Identify data gaps
 - Quantitative assessment of contaminant fate and transport sources, sinks, etc.
 - Develop conceptual site model
 - Issues related to site management
 - Develop site management options
 - Predictive tool for comparison of remedial alternatives
 - Provides another line of evidence in addition to empirical observations in developing a remedy
 - Support remedy design
 - Engineering design of remedial elements, environmental and flood impacts assessments, etc.

Schematic of Modeling Process

Model Development Model Application Conceptual **EPA** Peer Data Site Model Review Review Model Compare **Numerical** Model Forecasts -Model **Results to** Remedial **Alternatives** Data **Current Status of CFT Model**

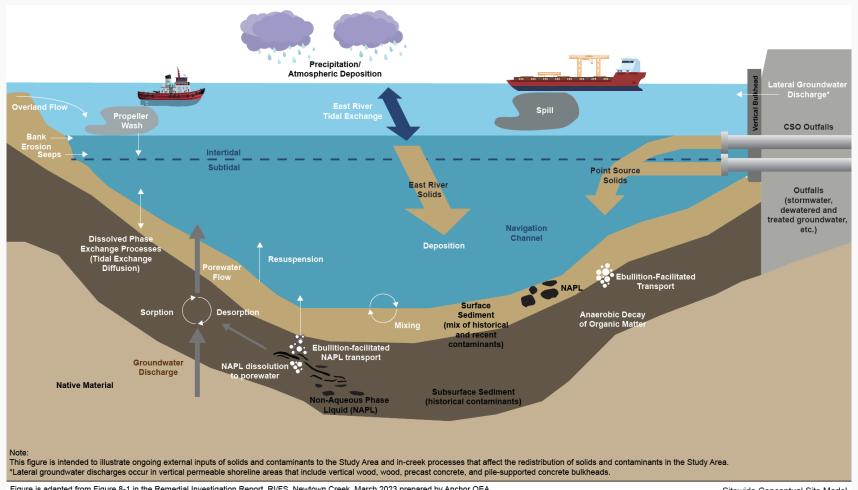
Scope of Newtown Creek Modeling Study

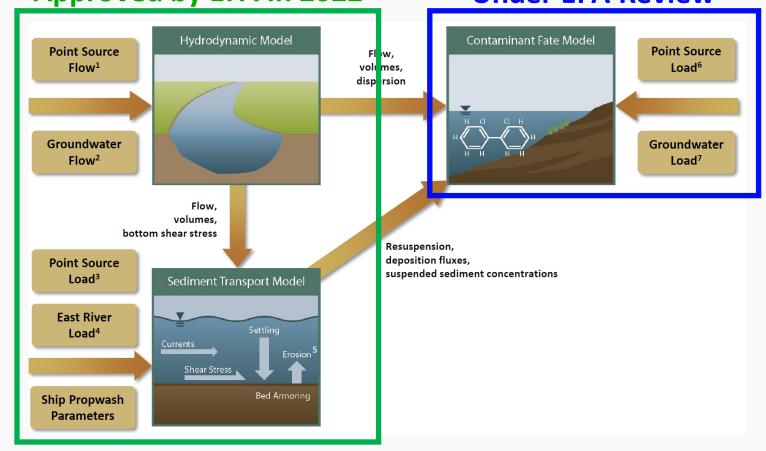

- Primary objective is to develop a reliable management tool that can be used to
 - Inform the conceptual site model
 - Evaluate the efficacy of remedial alternatives
 - The numerical model is one of several lines-of-evidence to support assessment of remedial alternatives



Model Application for Feasibility Study

- Model forecasts
 - Typically, a few decades into the future
 - Comparison of several metrics for various alternatives
 - Baseline (no remediation)
 - Various alternatives including remediation


Examples of Typical Feasibility Study Assessments


Conceptual Site Model

Numerical Model Framework

Peer Reviewed and Approved by EPA in 2022 Under EPA Review

Water Column Partitioning

Resuspension

Porewate

Exchan

Porewater

Advection

CFT Model

- Parameters/formulations simulated
 - Water column and bed contaminants
 - External loadings, advection, dispersion
 - Resuspension and deposition
 - Partitioning
 - Sediment-water column dissolved exchange
 - Bioturbation
 - Volatilization
 - Porewater advection
 - Ebullition
- Processes simulated

Sediment Partitioning

Net Sediment Porewater
Dissolved,
DOC-bound

Deep Sediment
Layer

External Loads (groundwater flux)

| Sediment Porewater Advection | Porewater Advection

External Loads (CSOs, stormwater, industrial

discharges, groundwater flux)

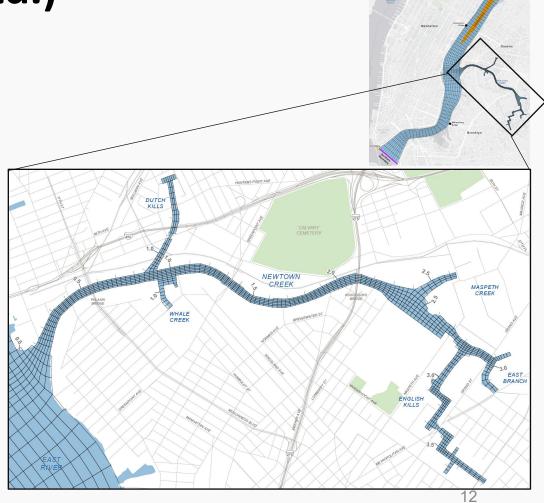
Transport

(Advection,

Dispersion,

Anchor QEA, 2014

Downstream


Mixing

- Fate and transport of contaminants from various sources
- Quantitative evaluation of various contaminant fate and transport processes
- Contaminant exposure over various temporal & spatial scales

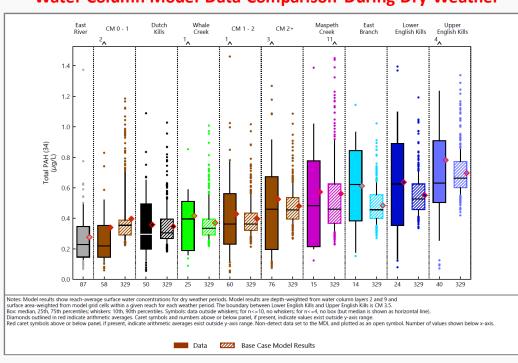
CFT Model (Contd.)

- Model framework
 - AQFATE
 - Contaminants PAHs, PCBs, and Copper
- Model domain covering Newtown Creek and near-Creek portion of East River
- Model inputs, e.g.,
 - Current chemical concentrations in sediment bed
 - External sources of chemicals
 - Partition coefficients
- Model performance relative to chemical concentration data in
 - Water column
 - Sediment bed
 - Sediment traps

Status of CFT Model

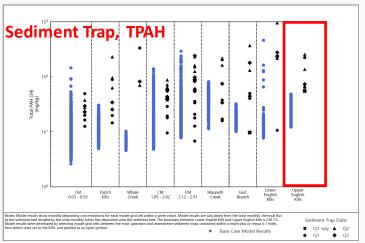
- CFT model developed by NCG
 - Using RI data
 - Based on conceptual site model
 - Using insights and results from the point source, groundwater, hydrodynamic, and sediment transport models
 - Model performance assessed by comparing model results to measured chemical data in water column, sediments, and sediment traps
- Draft report submitted by NCG in April 2022
 - Main body of report 500 pages of text and figures
 - Seven appendices 1600 pages of text and figures
- Review comments from EPA/NYC/NYS were complied and provided to NCG
 - Approximately 400 comments submitted over late-2022 and early-2023
- NCG currently addressing comments and revising the model and report accordingly

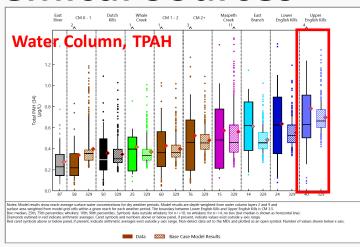
Overview of Comments on CFT Report

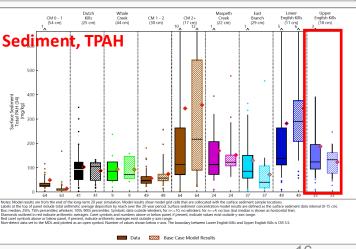

- Several categories of comments, including
 - Additional documentation
 - External sources of chemicals to the Creek
 - Model configuration and parameter values
 - Model performance
 - Model uncertainty and utility for assessing remedial alternatives

Comments – Documentation

- Model-data comparisons showing spatial trends in chemical concentrations in water column
 - Draft report only includes such comparisons during dry-weather conditions
- Comments about also including such comparisons using data and model results during wet-weather conditions

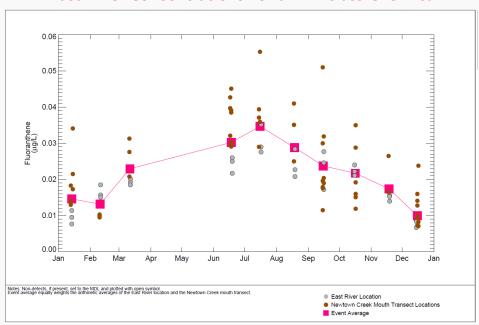

Water Column Model-Data Comparison During Dry-Weather





Comments – External Chemical Sources

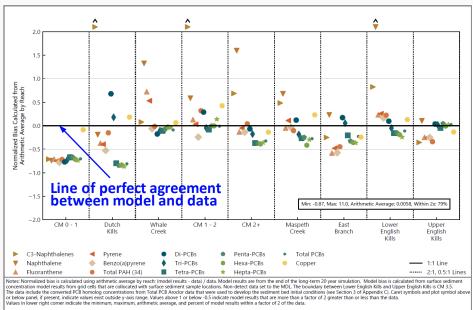
- Model performance for some chemicals comparable to measured chemical concentrations in water column and sediments but not in sediment traps
- Comments about performance bias potentially indicative of additional chemical sources to Creek not currently included in the model



Comments – Model Configuration

- Model development typically includes various choices, e.g., for concentrations entering Newtown Creek from East River
 - Monthly variations
 - Model inputs based on monthly average
 - Limited or no data for some months
 - Model inputs based on interpolation
- Comments about assessing impact of such limitations on model performance

East River Concentrations for a PAH-class Chemical



Comments – Model Performance

- Model performance comparable to data for most chemicals and areas within the Creek
 - Performance limitations for limited chemicals and areas
- Comments about potential impact on model application for remedy development

Model Performance Assessment for Sediments

Comments – Model Uncertainty/Utility

- Comments seeking to assess and document
 - Limitations in model performance
 - e.g., for specific chemicals or specific areas of the Creek
 - Model uncertainties
 - e.g., potential impact on the use of the model for comparing remedial alternatives
 - Potential measures to improve model performance
 - e.g., collect additional data

Schedule for CFT Model

- NCG currently addressing EPA and stakeholder comments
- Revised CFT report scheduled for submittal to EPA in April 2024
- The model will then be Peer reviewed by a group of modelling experts under EPA oversight. The Peer reviewers will provide comments to EPA in November 2024
- NCG to address peer review comments and include the data obtained from lateral groundwater study into the CFT. Revised report to EPA in June 2025
- NCG to address all comments and submit final draft to EPA in February 2026
- EPA to approve final report in May 2026

Questions?